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A Real-Time, Three-Dimensional Moving Platform Visualization Tool

Michael J. Zyda *, Robert B. McGhee, Corrine M. McConkle,
Andrew H. Nelson and Ron S. Ross

Naval Postgraduate School
Code 52, Dept. of Computer Science,

Monterey, California 93943-5100

ABSTRACT

Inexpensive, three-dimensional vehicle simulators are important
visualization tools that can enhance training and serve as low-cost
platforms for testing mobility expert system algorithms. The moving
vehicle simulator is an interactive, real-time system that displays a
dynamic, three-dimensional, out-the-window view of the terrain from
any vehicle. The simulator has two modes of operation: stand-alone or
networked. The networked mode facilitates a missile/target war gam-
ing environment. The simulator can be easily adapted for use with a
variety of computation resources on the network.

* Contact author.

1. Introduction

Previous work in the Graphics and Video Laboratory of the Department of Computer

Science at the Naval Postgraduate School included the production of a real-time simulator for

the Fiber Optically Guided Missile (FOG-M) [Ref. 1, pp. 19-27]. The FOG-M simulator

displayed a real-time, three dimensional, missile's eye view of terrain and vehicles driving

over that terrain. The FOG-M simulator used digital terrain elevation data from the Defense

Mapping Agency and a Silicon Graphics, Inc. IRIS-3120 graphics workstation.

The moving vehicle simulator (VEH) is a continuation of the FOG-M research [Ref.

2]. The goal of the follow-on study is twofold. The first objective is to provide a stand-alone

vehicle motion simulator. The second object;v,- is to piovide more realistic targets that,

through networking, can be used by the FOG-M simulator. One noteworthy aspect of the



simulator is tdxat the operator can display the out-the-windshield view of any vehicle during

program execution. The moving vehicle simulator has been incorporated into a Mobility

Expert System (MES) and could easily be adapted for use by other simulators modeling off-

road vehicle motion. It is the intent of this study to present the results of the design, devel-

opment, and implementation of the moving vehicle simulator and the networking capabilities

incorporattd into the system.

2. Background

The moving vehicle simulator models the motion of remotely piloted vehicles, such as

jeeps, tanks, or trucks, one of which is designated the driven vehicle. The driven vehicle

models a vehicle with an on-board video camera capable of transmitting live pictures of the

battlefield to a distant operator's console. The moving vehicle simulator displays a real-

time, three-dimensional, driver's view perspective of the terrain, and other vehicles. When

networking is enabled, the FOG-M missile is also visible. An interactive user interface and

a two-dimensional contour map display allow the operator to establish the desired simulator

configuration (stand-alone or networked with the FOG-M simulator) and to define each

vehicle to be used in the simulation. The vehicle locations, courses, speeds, and the selec-

tion of a driven vehicle are determined using a two-dimensional contour map display.

Once the simulation begins, a three-dimensional view of the terrain is displayed. The

operator can interactively control the motion of the vehicle designated as the driven vehicle.

The operator controls the driven vehicle's course, speed, and line-of-sight "look" direction

by h: k-hbs on a dial box. The viewing volume of the driven vehicle can be controlled by the

mouse.

3. Terrain Database

Both the moving vehicle simulator and the FOG-M simulator use a digital terrain eleva-

tion database provided by the Defense Mapping Agency (DMA) to draw the three-dimen-
sional scene. This data is stored as an array of sixteen bit data points that represent the ter-
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Figure 1 Terrain Polygons I
rain of Fort Hunter-Liggett, California. The upper three bits represent the height of the vege-

tation at that data point. The lower thirteen bits represent the terrain elevation, without the

vegetation height [Ref. 3, pp. 2]. The terrain elevation data file is formatted to match the

two-dimenblonal array used to store it during program execution. Data points for ten lengths

of ten kilometers are stored a row at a time, from west to east along a row's length, and from

south to north, going from row to row. This matches the C compiler storage mapping function

for two-dimensional arrays.

3 The tei, kilometer by ten kilometer area of missile flight is sectnoned into one huncred

meter squares, with each square consisting of two triangles (Figure 1). The triangles are

used to construct a colored, three-dimensional terrain display. Values for the triangles' coor-

-3-

~. ~S,*%C~t~4 ,~ '*'g ~~ ~ ~ . -



zi
- -- -First quadrant

Fi--t- 0-90 degrees

- - --First pit
0.45 degrees

I 1 of-sight

[A, 40 4

SField of View

numbers indicate drawing order
north to south, cast to west

Figure 2 First Quadrant Drawing Order Example

dinates are determined prior to missile flight. A separate program converts the elevation

height values from feet to meters, reads and scales the terrain data from the master data file,

and formats the converted data into the file used by the moving vehicle simulator. Raw ele-

vation values are scaled exponentially by a factor of 1.05 to provide a more esthetic display.

4. Graphics Hardware

Ihe moving vehicle simulator is implemented using a Silicon Graphics, Inc. IRIS 3120

high performance color graphics workstation. The workstation uses a Motorola 68020 micro-

processor and is available for under $30,000. The workstation also uses custom VLSI chips

to provide hardware clipping and matrix transformations. The high speed, pipeline architec-

ture allows the performance of viewing, modeling, projection and display device transforma-

-4-

ALS



L\T ,, . ~t~ '~V7t~xwru

3rd Octant 2nid Octant

6th Octant 7th Octas

a.

ViewerS'
position

b.

Figure 3 Octant Scan Lines

tions at a much greater rate than would be possible in software. The graphics hardware can

be conceptually depicted as three pipelined components: the applications/graphics processor,

the geometry pipeline, and the raster subsystem. The geometry pipeline and the raster sub-

system are controlled by the applications/graphics processor [Ref. 4, pp. 1-1]. The IRIS pro-

vides a double buffer display system with a resolution of 1024 by 768 pixels.

5. Hidden Surface Elimination

Hidden surface elimination is accomplished by a real-time implementation of the

painter's algorithm. The painter's algorithm simply draws objects in the scene in depth sort-

ed (furthest to nearest) order [Ref. 5, pp. 2661. For the terrain, the correct polygon drawing

order for hidden surface elimination is an easily computable function of the line-of-sight of

-5-



the vehicle currently being operated (Figure 2). The number of grid squares drawn is mini-

mized by partitioning the entire viewing circumference into octants. The drawing order of

each grid square within an octant, from furthest to nearest, is based on a scan line algorithm

(Figure 3a). If the line-of-sight is in the eighth octant, the scan lines are defined by indices

startx and startz. Startz is incremented until a stopz is reached. Stopz's are determined by

the field of view calculated from the viewer's position. Before startz is incremented, all vehi-

cles located in the grid square that was just drawn are also drawn. One vertical scan line is

shown in (Figure 3b). The next scan line is drawn by moving the startx one position closer te.

the viewer and repeating the process. This process is repeated until all grid squares in the

octant are drawn.

After the entire scene is constructed, the vehicles in the viewer's grid square are drawn

again. This is done to ensure that the vehicles drawn in adjacent grid squares are "painted

over" by vehicles in the viewer's grid square.

Vehicles located in the center of a grid square are drawn immediately after the grid

square that they occupy is drawn. Vehicles crossing grid square boundaries are drawn only

once. The grid square that they are drawn in is determined by the quadrant they are in and

the boundary the vehicle is crossing. A vehicle is drawn in an adjacent grid square only if it

is near certain edges. The edges are determined by the painter's algorithm and are shown in

Table 1.

Ouadrant Grid Square Edge
0 South, West
1 South, East
2 North, East
3 North, West

Table 1 Vehicle Grid Square Adjustment Table
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Figure 4 Drawing in an Adjacent Grid Square

An illustrative example of the methodology employed in the drawing process is provided. In

Figure 4, the line-of-sight from the driven vehicle 'A' is in quadrant one. With this line-of-

sight, vehicles near a southern or eastern grid square edge are drawn after the adjacent grid

square in that direction rather than in the grid square the vehicles occupy. Vehicle 'B' in Fig-

ure 4 is located at the southern edge of grid square three. Since the painter's algorithm

draws grid square three before grid square four, the part of the vehicle overlapping grid

square four would be "painted over" by grid square four if the vehicle was drawn in grid

square three. To correctly draw the vehicle and both grid squares it overlaps, the vehicle

must be drawn after grid square four.
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6. Vehicles

In the moving vehicle simulator, the vehicles are created as graphical objects. Each

polygon of each vehicle is drawn by defining its vertices and colors, and then drawing the

polygon using a call to a polygon fill function. All objects are created using backface polygon

removal and the painter's algorithm to display an undistorted view of a three-dimensional,

light shaded object from any viewing angle above the ground plane.

Target vehicle objects (jeeps, trucks, tanks) are built during program initialization.

After the objects are constructed, they are animated and oriented to the terrain. A vehicle's

course and speed are used to calculate its new position based on the distance it would have

traveled in the time required to refresh the screen. Each vehicle defined is associated with

an element of one of three global two-dimensional arrays. There is one array for each of the

three types of vehicles. The values stored in the arrays are the integer names of the graphi-

cal objects to be drawn in each terrain grid square. All vehicles present in one grid square

are associated with the same element of the array. All commands required to draw each

type of vehicle are collected into the same graphical object. Vehicles are displayed by draw-

ing the terrain grid square and then accessing the appropriate two-dimensional array to draw

the vehicles that are present in that grid square.

7. Vehicle Data Structures

The moving vehicle simulator uses two data structures to manage the vehicle display.

A linked list of vehicle definition data is created before the display loop begins and is updated

with each pass through the loop. Each structure in the linked list contains all the data

required to transform and orient a vehicle object to the correct position on the terrain. One

object for each type of vehicle is created before the display loop begins. The drawing com-

mands in these objects are used to draw every vehicle of that type used in the display.

The second data structure manages vehicle hidden surface removal. A single two-

dimensional array maintains the connection between the grid squares and the order that the

2 -8-
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vehicles present in the grid square must be drawn. Each element in the array contains a list

of pointers to records in the vehicle definition list for the vehicles that should be drawn imme-

diately after drawing the terrain grid squares. The lists are maintained in depth sorted order

(furthest to closest) from the driven vehicle. The grid square that a vehicle should be drawn

in is determined by the vehicle's proximity to a grid square edge and the direction of the line-

of-sight. As a result, a vehicle is drawn only once, regardless of its position on the terrain.
As a vehicle overlaps a grid square, its position in the two-dimensional array changes. Fig-

ure 5 shows how the array changes while maintaining the linked list depth sorted order. All

the functions used to draw the vehicles and terrain are performed in the display loop. Each
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pass through the loop represents one frame of animation. By optimizing the functions, a

frame rate that simulates a real-time display is achieved.

8. Software Implementation

The AT&T Unix System V operating on the IRIS workstation supports Fortran, Pascal,

Franz Lisp, an optimized C language compiler and a complete graphics library. The C pro-

gramming language was selected for implementation of the vehicle simulator to be compati-

ble with the original FOG-M simulator [Ref. 1, pp. 19-271. Additionally, the communica-

tions packages developed at the Naval Postgraduate School are all implemented in C [Ref.

61.

The moving vehicle simulator can be divided into two operational modes: stand-alone

mode and networked mode. The stand-alone mode provides an environment where the oper-

ator can simulate driving vehicles over the selected terrain. In the networked mode, the mov-

ing vehicle simulator provides realistic targets for the FOG-M simulator.

8.1 Stand-Alone Mode

There are two fundamental sections of the stand-alone mode: the initialization phase

and the vehicle driving simulation phase. The initialization phase provides an environment

for vehicle definition and interactive input of vehicle course, speed, and position on the ter-

rain. Additionally, the operator determines the desired mode (stand-alone or networking) in

this phase. The driving phase provides an environment that dynamically updates the terrain

displays in real-time based on operator controlled changes to the driven vehicle's speed,

course, and viewing volume. The operator also designates the driven vehicle.

8.1.1 Initialization Phase

The initialization phase is the interactive input component of the moving vehicle simula-

tor program. The display screen is partitioned into three areas (Figure 6). A large square

area (768 by 768 pixels) on the left part of the screen represents the two-dimensional con-

I -0-



tour map of the ten kilometer area over which the vehicles will operate. The contours are cre-

ated from the elevation data in the DMA digital terrain elevation database. The map is color

coded based on elevation points. The current menu is located in the upper right comer of the

display. Instructions corresponding to the current menu are displayed in the lower right cor-

ner of the screen.

During this phase, the operator can define vehicles by moving the cursor on the contour

map using the mouse. When the desired vehicle location on the map is selected, the coordi-

nates are locked in by pressing the left mouse button. An icon image of the vehicle appears

on the map at the specified location. The operator then moves the cursor in the direction of

the desired vehicle course. A rubberband line, originating at the icon image, shows the

potential vehicle course. Pressing the left mouse button locks in the course represented by

the direction of the rubberband line from the vehicle's defined location. A slider speedometer

appears in the menu area to allow the operator to set the vehicle's speed by moving the cur-

sor and pressing the left mouse button. Once all desired vehicles have been defined, the

actual simulation can begin.

8.1.2 Vehicle Driving Simulation

The driving simulation phase provides successive real-time terrain displays to the oper-

ator as the vehicle moves over the terrain. The simulation begins with the designation of a

driven vehicle selected from the previously defined vehicles. The driven vehicle is selected

by moving the cursor over the vehicle's icon image on the map and then depressing the left

mouse button. Selection of a vehicle starts the display loop of the simulation. In networked

mode, the vehicle simulator waits until the missile launch occurs before entering the display

loop.

The driving display is partitioned into four areas (Figure 7). The large square area to

the left (768 by 768 pixels) represents the out-the-window view as seen from the driven

vehicle. An operating menu is displayed in the upper right side of the screen that allows the

-Il-
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Figure 6 Contour Map for Vehicle Placement

II

Figure 7 Tanks in Line Formation
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operator to change vehicles or terminate the program. A contour map with the position of the

driven vehicle and its viewing volume is displayed on the right, center section of the screen.

The driven vehicle's speed, view direction and available operator controls are shown in the

lower right section of the screen.

8.2 Networked Mode

The moving vehicle simulator is the first attempt at the Naval Postgraduate School to

produce a network of real-time, interactive moving platform simulators. The network commu-

nication protocol selected is normal (blocking) socket I/O [Ref. 6]. Blocking I/O allows syn-

chronous operation of the FOG-M and moving vehicle simulators. A pair of sockets is used

to transfer and guarantee delivery of the socket stream data between the two simulators.

The moving vehicle simulator acts as the server to the client FOG-M simulator.

Operating the moving vehicle simulator in conjunction with the FOG-M simulator

requires establishing network data paths. This is accomplished through the creation of dedi-

cated sockets for read and write paths for both control and data. Failure to establish the

communications paths causes the simulators to default to the stand-alone mode of operation.

Prior to missile launch, the missile operator's console is provided with relevant vehicle

information; i.e., the number and types of vehicles defined. Handshaking takes place after ini-

tial data transfer and before entering the display loop to allow either console to abort the sim-

ulation. If either simulation is aborted, the other can continue in stand-alone mode. After

completion of the initial set-up, the FOG-M simulation console waits for the vehicle defini-

tion data from the moving vehicle simulator before allowing missile launch. The moving vehi-

cle simulation waits for the launch event before entering the display loop to insure simulator

synchronization. Regardless of the number of vehicles in the missile flight area, only the

driven vehicle's information is sent to the missile console. The position of the other vehicles

is predicted based on their initial position, course and speed.

-13-



The missile simulator transfers a status flag to the moving vehicle simulator indicating if

the missile is still in flight. If the missile is still flying, it sends missile position and course

data. If it is no longer flying, it sends the identity of the vehicle destroyed.

9. System Features and Limitations

Currently, the system allows only one console of each simulator type in a dedicated link

arrangement to be networked together. To insure synchronization, a console can not proceed

past a socket read until the information is obtained. This lock-step execution prevents the

vehicle console operator from changing the driven vehicle while the missile is in flight.

As in the FOG-M simulator, the inability to display the terrain using the 12.5 meter

samples available in the terrain data file is another limitation of this simulator. To utilize the

12.5 meter samples would require some 64 times more triangles in the terrain display. The

simulator uses 100 meter samples and that reduces the degree of variation in the terrain sur-

face. The use of 100 meter samples is all the IRIS-3120 can currently support for real-time

display.

System performance for the networked mode, stand-alone mode, and the mobility

expert system (MES) are shown in Table 2.

Simulator Mode Number of Vehicles Frames Per Second
Networked 1 (static) 2.6

10 (static) 1.9
1 (dynamic) 1.4

10 (dynamic) 1.2
Stand-Alone 1 (static) 5.7

10 (static) 4.0
1 (dynamic) 5.3

10 (dynamic) 4.3
MES 1 (dynamic) 3.7

10 (dynamic) 3.3

Table 2 Display Update Rates
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Static refers to the type of vehicle objects drawn in the original FOG-M simulator. Dynamic

refers to vehicle objects that more closely reflect normal vehicle dynamics over natural ter-

rain. The vehicle dynamics modeled in the MES are more complicated than the dynamics

modeled in the other simulators, resultin n a slower frame update rate.

T.,.,.

10. VEH as a Visualization Tool for a Mobility Expert System

Above, we describe the moving vehicle simulator as either stand-alone or as a net-
worked player to the FOG-M simulator. It is actually an important visualization tool.

Research is ongoing to develop new applications around the moving vehicle simulator. An 

enhanced version of the moving vehicle simulator is being used in conjunction with a Mobility

Expert System (MES) currently under development at the Naval Postgraduate School.

-15-
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10.1 MES Goals and Objectives

The development of expert system based coordination algorithms for groups of

autonomous vehicles is the major objective of the MES project. The second objective is to

develop the software necessary to create motion simulation of the system using realistic

vehicle dynamics over a computer generated terrain model. For purposes of this study, the

prototype system developed closely follows the model of the FMC autopilot [Ref. 7]. The

program hierarchy is shown in Figure 8.

The MES is a system using four different computer architectures, three programming

languages, four networking packages, three operating systems and an expert system shell.

The four computer architectures used are: the Symbolics 3600 line of LISP Machines, the

Texas Instrument Explorer LISP Machine, the Silicon Graphics, Inc. IRIS Graphics Worksta-

tion, and the Digital Equipment Corporation VAX 11/785. The operating systems utilized in

the project are the Unix operating system (4.3BSD and ATT System V.3), the Symbolics

Genera system and the Texas Instruments Explorer system. The languages implementing

the system are Prolog, C, and Lisp with flavor extensions. The expert system shell used is

the KEE expert system.

A high level Command and Control Subsystem (CCS) is simulated on a LISP Machine

and a VAX. The CCS provides centralized autonomous command and control functions to

the individual tanks and acts as a single interface to the autonomous vehicles in the unit.

This allows an isolation of observable phenomena for the tactical assessment function as

well as centralizing the focus of one problem in the research area.

Simulated tanks with the characteristics of the existing FMC Autonomous Land Vehi-

cle are modeled as in [Ref. 7]. The model is conceptually organized into two distinct parts:

(1) the graphics instantiation, with vehicle controller functions on the IRIS, and (2) the rule-

based, expert system behavior, implemented on the Lisp Machines. The tanks operate

autonomously in much the same way as the FMC vehicle [Ref. 71. Specifically, each tank

-16-



possesses a simulated vision capability, an autopilot, and the ability to send vehicle steering

and reference velocity commands to a vehicle controller.

10.2 Autonomous Tank Rules

Individual tanks perform according to the algorithm presented in Figure 9. The autopilot

possesses capabilities in addition to those being developed at FMC [Ref. 8]. These extra

capabilities allow the vehicle to act as an integral part of a tactical autonomous unit. A

tank's designated place in a tactical formation is based on the commands sent to it from the

lead tank. The tank maintains its station in the formation until it receives new commands.

Currently the tanks use three sets of simple rules that allow the vehicles to assume a line,

column, or file formation [Ref. 91. For each formation, each tank possesses knowledge about

who it is, the type of formation, its guide vehicle, and the vehicles that should be to its flanks,

front and rear. Rules for each formation are divided into four functional categories: collision

avoidance, speed determination, direction determination, and stationing. These rules are pre-

sented in Figures 10 through 13.

An autonomous tank is comprised of a set of functions that reside on a LISP machine.

The autonomous tank's controller and graphics object reside on the IRIS. Each LISP

machine controls a graphically rendered tank on the IRIS battlefield during a simulation run.

The Lisp functions perform the algorithms presented in Figures 9 through 13. Each LISP

machine generates task commands that are sent to the individual tank that it controls. The

LISP machines also determine the approximate time interval required for the tank to respond

to the task command.

The tanks perform a simulated visual scan of the environment in the IRIS and produce

high-level observations about the battlefield. These observations are used to perform tacti-

cal assessments and create tasks to accomplish goals using rule-based inference engines. A

rule-based inference engine is a program that processes if<circumstances>then<do-task>

type expressions. These expressions are constructed through the interrogation of an expert.

1I
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Loop

Check for commands from the Command and Control Subsystem.
If change in formation, acquire rules and facts
necessary from disk storage and implement.

Perform a visual scan of the environment.

For each object identified:

Establish its position in reference to the
tank's body coordinate system.

Approximate its future location at beginning
of next iteration of the algorithm.

Produce low level observations about the
object as input to the task generator.

EndFor

Generate tasks in the task generator using the low level
observations and knowledge and rules necessary to
complete currently assigned goals.

Display diagnostic information and explanations for each
task generated.

Execute communications tasks to Command and Control
subsystem.

Execute tasks generated by communicating sequences
of vehicle steer and reference velocity commands
to the vehicle controller residing on the IRIS.

EndLoop.
Figure 9 Autonomous Tank Control Algorithm

-18-

Ir f"



Avoid Collision To The Right:
If

the vehicle is or will be too close to an object, and
the object is to the right of the vehicle,

Then
move to the left.

Avoid Collision To The Left:
If

the vehicle is or will be too close to an object, and
the object is to the left of the vehicle,

Then
move to the right.

Avoid Collision Ahead:
If

the vehicle is or will be too close to an object, and
the object is ahead of the vehicle,

Then
If

not enough time to maneuver,
Then

Stop.
ElseIf

able to maneuver,
Then

maneuver around object in flank
with greatest maneuvering room.

Avoid Collision From Behind:
If

the vehicle is or will be too close to an object, and
the object is behind the vehicle and closing,

Then
match the object's speed.

Figure 10 Collision Avoidance Rules

S
k
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Change Speed:
If

vehicle is on course with its guide vehicle, and
vehicle is behind or ahead of its station,

Then
change speed to move vehicle to position by
next iteration of tank algorithm.

Match Speed:
If

vehicle is on course with its guide vehicle, and
vehicle is on station with its guide vehicle,

Then
match speed of the guide vehicle.

Iq!Qp:

If
guide vehicle is stopped, and
vehicle on station with guide vehicle,

Then
stop vehicle on station.

Figure 11 Speed Determination Rules

Turn Left:
If

vehicle is off course from its guide vehicle and
relative right to the direction of guide vehicle's
course,

Then
turn left the angular difference to come about.

Turn Right:
If

vehicle is off course from its guide vehicle and
relative left to the direction of guide vehicle's
course,

Then
turn right the angular difference to come about.

Figure 12 Direction Determination Rules

-20-
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Close Right With Guide:
If
vehicle is too far from guide, and
vehicle is left of guide, and
guide vehicle is normally vehicle's right vehicle,

Then
move to the right.

Close Left With Guide
If

vehicle is too far from guide, and
vehicle is right of guide, and
guide vehicle is normally vehicle's left vehicle,

Then
move to the left.

Assume Correct Position in Relation to Guide:
If
vehicle is on course with guide, and
vehicle is left/right of guide,
but vehicle should be right/left of guide,

Then
drop behind guide,
turn 90 degrees right/left,
proceed until past guide,
turn 90 degrees left/right.

Figure 13 Stationing Rules
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> (gettanks "lineformation")
T
> (start-the-battle 1 3)

Tank #1 now conscious

name = I name of the tank that is conscious
xl = 5300.49 ; grid coordinates of tank I
zI = 1743.12
speed =0.0 ;tank I is not moving
direct = 302.25 ; tank l's course
r-angle = -57.75 ; tank I's course relative to compass north
name =2 ;name of tank being compared to tank I
x2 = 5408.97 grid coordinates of tank 2
z2 = 1720.71
speed =1.0 ;speed of tank 2
direct =303.10 ;tank 2's course
reldir = 0.0 tank 2's course relative to tank I 's course
x2rel = 38.93 tank 2's position relative to
z2rel = -103.70 ; tank l's position
x2nxt = 38.93 estimated position of tank 2 when
z2nxt = -84.37 ; tank 1 becomes conscious again
distance= 19.33 rel distance between tank 1 and 2

when tank I becomes conscious again

(14a)

name =1
xl = 5300.49
z1 = 1743.12
speed =0.0
direct = 302.25
r-angle = -57.75
name =3
x3 = 5432.12
z3 = 1809.47
speed =1.0
direct = 302.25
reldir =0.0
x3rel = 126.35
z3rel =-75.92

x3nxt = 126.35
z3nxt = -56.58
distance= 19.33

(14b)

Figure 14 Single Iteration of Start-the-Battle
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(RULE CLOSE-RIGHT SAYS TASK MOVE-TO-RIGHT 1)
(RULE DIRECTIONS SAYS LEFT IS OPPOSITE OF RIGHT)
(RULE DIRECTIONS SAYS RIGHT IS OPPOSITE OF LEFT)
(RULE STOP SAYS TASK STOP 1)

(14c)

(TASK MOVE-TO-RIGHT I BECAUSE)
(RIGHT VEHICLE IS 2)
(1 IS LEFT OF 2)
(I WILL BE LEFT OF 2)
(I WILL BE TOO FAR FROM 2)

(GUIDE VEHICLE IS 2)
(VEHICLE IS 1)
(FORMATION IS LINE)

(1 4d)

(TASK STOP 1 BECAUSE)
(I WILL BE AHEAD OF 2)
(GUIDE VEHICLE IS 2)
(VEHICLE IS 1)
(FORMATION IS LINE)

(1 4e)

Figure 14 Single Iteration of Start-the-Battle (continued)
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Tank #1 now conscious

name =I
x1 = 4474.45
zI =2411.60
speed =1.46
direct = 302.25
r-angle 57.75

name = 3
x3 = 4453.29
z3 = 2428.31
speed =1.0
direct = 302.25

reldir = 0.0

x3rel = 2.83
z3rel = 26.81

x3nxt = 2.83
z3nxt = 7.17
distance= 19.63

(RULE AVOID-COLLISION-TO-RIGHT SAYS TASK MOVE-TO-LEFT 1)
(RULE DIRECTIONS SAYS LEFT IS OPPOSITE OF RIGHT)
(RULE DIRECTIONS SAYS RIGHT IS OPPOSITE OF LEFT)

(TASK MOVE-TO-LEFT I BECAUSE)
(1 WILL BE LEFT OF 3)

(1 WILL BE TOO CLOSE TO 3)
(VEHICLE IS 1)
(FORMATION IS LINE)

Figure 15 Reasoning about Future Events
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Typical tasks, such as those generated for formation keeping, are vehicle referent velocities

and directions. These tasks are transmitted to the vehicle controller residing on the IRIS.

The vehicle controller then executes the tasks and communicates feedback information to the

requesting Lisp Machine.

10.3 A Single Iteration of Start-the-Battle

Figure 14 presents a single iteration of the tank algorithm for tank 1 operating in con-

junction with two other vehicles, tank 2 and tank 3. The information in Figure 14 is taken

from the display of the Lisp Machine designated as tank 1. Figure 14a shows both tank I

and tank 2's grid coordinates, course, speed, and information about tank 2's position, course,

and speed relative to tank 1. Figure 14b shows the same information for tank 3. Figure 14c

shows the rules needed to move a tank to the right. Figure 14d shows the rules used for a

line formation for maintaining a separation interval between two tanks. Figure 14e shows

the rule used when tank 2 is the guide tank and tank 1 is too far ahead of the guide tank. As

a result, tank 1 is ordered to stop. Once the guide tank catches up, another set of rules (not

shown) is used to order tank 1 to increase speed.

The tanks reason about the IRIS battlefield world relative to their own individual body

coordinate systems. The tanks reason about time by approximating positions, dispositions,

and possible intentions of objects in view during possible future event time frames. Tanks

also continuously re-evaluate their individual circumstances as well as their vehicle con-

troller's response time to a direction or velocity command. This allows a tank to predict and

address future events. Figure 15 provides an example.

In Figure 15, x3rel and z3rel are the x and z coordinates of tank 3 relative to tank I at

time t. The variable x3nxt and z3nxt are the predicted x and z coordinates of tank 3 relative

to tank l's predicted future location at time t'. Tank 1 will be too close to tank 3 because the

horizontal interval distance will exceed the value of a constant measure called proper-inter-

val as tank 1 approaches tank 3 from behind. The proper interval is the required distance
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Figure 16 Moving to the Line of Departure

Figure 17 Crossing the Line of Departure
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Figure 18 Deploying at the Final Coordination Line

Figure 19 Assaultig the Objective



between two tanks in the formation. This distance varies depending on the type of formation

being executed. When the distance between the two tanks is less than the proper interval, a

task is generated by tank 1 to increase the distance between the two tanks.

10.4 A Typical Test Mission

Figures 16 through 19 illustrate a typical test mission. Figure 1G depicts the movement

from an assembly area. The initialization phase for the IRIS has been conducted, the tactical

assessment carried out, and four LISP machines have been initialized to drive four of the

tanks in the unit. The guide vehicle for the unit, driven by a human operator on the IRIS, has

been given an initial direction and speed. The jeep was then selected to view the formation

as it turned to its left to assume a column formation. The picture was taken from the jeep.

Figure 17 depicts the column after crossing the line of departure and conducting move-

ment to contact (going out and engaging the enemy). The guide vehicle is the lead tank in

the column. To obtain the picture, the jeep was driven to a known destination of the lead

tank. The jeep then was positioned to get a view as the column approached.

Figure 18 depicts the actions at the final coordination line. The unit deployed into a line

formation and is about to move through the objective. This deployment was effected with the

help of manual intervention. The guide tank was stopped at the final coordination line by a

human operator. This forced the column to halt by initiating certain station keeping rules.

The function application of Start-the-battle was allowed to expire upon each LISP machine.

A new formation was then acquired by each LISP machine. The function Start-the-battle was

then re-applied upon each LISP machine. The human operator assumed control of the guide

vehicle while the autonomous, LISP machine driven tanks then assumed their positions in

the line formation after about 30 seconds of maneuvering.
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Figure 19 depicts a flanking view of the line of tanks as they assault an objective. The

line is sweeping past the stationary jeep from which the picture was taken. The fifth tank in

the line decided to maneuver around the other side of the jeep and is not depicted.

10.5 MES Implementation

The MES system is distributed across the various specialized architectures in accor-

dance with hardware capabilities. Thus, it was possible to create an entirely satisfactory

real-time system at low cost. The current suite of equipment allows up to five individual

tanks to operate on the battlefield represented on the IRIS.

Performance bottlenecks occur during communication processing on the IRIS. This is

because each tank spawns a send and receive process to communicate to a Lisp machine.

The performance bottlenecks on the Lisp machine side are in relation to the sequential nature

of the command and control system's execution. The problem is that the vision and inference

operations are not concurrent or continuous. The LISP machine must ask the IRIS for vision

information and then wait until the IRIS collects and returns the vision information. Once it

has the information, it uses the information to make inferences about the tank it is controlling

relative to the other tanks on the battlefield.

11. Conclusion

We have described how one extends the capabilities of inexpensive three-dimensional

visual simulators on individual workstations to the networked workstation environment.

Individual graphics workstations are easily grown out of as our applications become more

sophisticated. We grow out onto a network of workstations to allow for other players or to

partition our system into processes computed by separate machines. For the system

described above, the partitioning across machine boundaries has been expensive due to the

lack of readily available networked graphics and computing software facilities. We expect

this to change as high-performance graphics workstation manufacturers recognize the impor-
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tance of distributed graphics and computational functionality. Ideas such as location indepen-

dent computing and location independent graphical objects are a step in the right direction.

We have also shown flow the notion of inexpensive three-dimensional visual simula-

tors as visualization tools can lead to better understanding for typically graphics-less areas

such as expert systems. Three-dimensional simulators that can be readily "plugged-into"

diverse computational environments present a viable alternative for the future. To accom-

plish this goal, we need to make our three-dimensional visual simulators inexpensive and

adaptable.
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